244 research outputs found

    Supersymmetric partners of the trigonometric Poschl-Teller potentials

    Full text link
    The first and second-order supersymmetry transformations are used to generate Hamiltonians with known spectra departing from the trigonometric Poschl-Teller potentials. The several possibilities of manipulating the initial spectrum are fully explored, and it is shown how to modify one or two levels, or even to leave the spectrum unaffected. The behavior of the new potentials at the boundaries of the domain is studied.Comment: 20 pages, 4 figure

    Coach Ed Temple and the Tigerbelles

    Get PDF

    Geometric Phases and Mielnik's Evolution Loops

    Full text link
    The cyclic evolutions and associated geometric phases induced by time-independent Hamiltonians are studied for the case when the evolution operator becomes the identity (those processes are called {\it evolution loops}). We make a detailed treatment of systems having equally-spaced energy levels. Special emphasis is made on the potentials which have the same spectrum as the harmonic oscillator potential (the generalized oscillator potentials) and on their recently found coherent states.Comment: 11 pages, harvmac, 2 figures available upon request; CINVESTAV-FIS GFMR 11/9

    Structure of nonlinear gauge transformations

    Full text link
    Nonlinear Doebner-Goldin [Phys. Rev. A 54, 3764 (1996)] gauge transformations (NGT) defined in terms of a wave function ψ(x)\psi(x) do not form a group. To get a group property one has to consider transformations that act differently on different branches of the complex argument function and the knowledge of the value of ψ(x)\psi(x) is not sufficient for a well defined NGT. NGT that are well defined in terms of ψ(x)\psi(x) form a semigroup parametrized by a real number γ\gamma and a nonzero λ\lambda which is either an integer or 1λ1-1\leq \lambda\leq 1. An extension of NGT to projectors and general density matrices leads to NGT with complex γ\gamma. Both linearity of evolution and Hermiticity of density matrices are gauge dependent properties.Comment: Final version, to be published in Phys.Rev.A (Rapid Communication), April 199

    Comment on "Consistency, amplitudes, and probabilities in quantum theory"

    Full text link
    In a recent article [Phys. Rev. A 57, 1572 (1998)] Caticha has concluded that ``nonlinear variants of quantum mechanics are inconsistent.'' In this note we identify what it is that nonlinear quantum theories have been shown to be inconsistent with.Comment: LaTeX, 5 pages, no figure

    Magnetic operations: a little fuzzy physics?

    Full text link
    We examine the behaviour of charged particles in homogeneous, constant and/or oscillating magnetic fields in the non-relativistic approximation. A special role of the geometric center of the particle trajectory is elucidated. In quantum case it becomes a 'fuzzy point' with non-commuting coordinates, an element of non-commutative geometry which enters into the traditional control problems. We show that its application extends beyond the usually considered time independent magnetic fields of the quantum Hall effect. Some simple cases of magnetic control by oscillating fields lead to the stability maps differing from the traditional Strutt diagram.Comment: 28 pages, 8 figure
    corecore